UTokyo Team Taps into Summit’s AI Architecture to Accelerate Earthquake Application

November 14, 2019

Nov. 14, 2019 — Each year, anywhere from a few hundred to tens of thousands of deaths are attributed to the catastrophic effects of major earthquakes. Apart from ground shaking, earthquake hazards include landslides, dam ruptures, flooding, and worse—if the sea floor is suddenly displaced during an earthquake, it can trigger a deadly tsunami.

Although earthquakes can’t be prevented, processes involving the Earth’s tectonic plates that make up its crust and upper mantle can provide scientists with clues about the possible effects of these impending disasters before they arrive.

The San Andreas Fault (red lines) and the other plate boundaries (green lines). Color contours indicate the presumed fault slip distribution of the 1700 Cascadia Subduction Zone earthquake. Circles show the earthquake distribution in 1900–2019. Disastrous earthquakes (purple circles) and damaged cities are shown with the M7.1–2019 Ridgecrest earthquake (red circle). Image courtesy of UTokyo.

A team led by professor Tsuyoshi Ichimura at the Earthquake Research Institute (ERI) at the University of Tokyo (UTokyo) is studying the deformation of tectonic plates to aid physics-based forecasting of natural disasters such as earthquakes. Specifically, the team is simulating a tectonic plate boundary spanning from Vancouver, British Columbia, down to Northern California. At this boundary—called the Cascadia Subduction Zone—the coastal Explorer, Juan de Fuca, and Gorda plates move east and shift underneath the North American Plate, a process known as subduction that can trigger large-magnitude earthquakes and volcanic activity.

The team recently extended and optimized one of its scientific codes for the world’s most powerful and smartest supercomputer for open science, the IBM AC922 Summit at the Oak Ridge Leadership Computing Facility (OLCF), a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory (ORNL).

By transforming the Unstructured fiNite element ImpliCit sOlver with stRuctured grid coarseNing (UNICORN) code into an artificial intelligence (AI)–like algorithm, the team ran UNICORN at 416 petaflops and gained  75-fold speedup from a previous state-of-the-art solver by fully leveraging the power of the Tensor Cores on Summit’s Volta GPUs. Tensor Cores are specialized processing units that rapidly carry out matrix multiplications and additions using mixed-precision calculations.

“The Tensor Cores aren’t available for just any type of calculation,” said Kohei Fujita, assistant professor at ERI. “For this reason, we had to align all of our data access patterns and multiplication patterns to suit them.” Data access patterns determine how data is accessed in memory by a software program and can be organized more efficiently to exploit a particular computer architecture.

Using UNICORN, the UTokyo team simulated a 1,944 km × 2,646 km × 480 km area at the Cascadia Subduction Zone to look at how the tectonic plate is deformed due to a phenomenon called a “fault slip,” a sudden shift that occurs at the plate boundary.

The team said the new solver can be used as a tool to aid scientists in the arduous task of long-term earthquake forecasting—a goal that, when realized, could lead to earthquake prediction and disaster mitigation.

Previously, the team demonstrated a general approach to introduce AI to scientific applications in the iMplicit sOlver wiTH artificial intelligence and tRAnsprecision computing, or MOTHRA, code—an achievement that earned them an Association for Computing Machinery Gordon Bell finalist nomination last year.

“For UNICORN, we optimized the code specifically for Summit,” said ERI doctoral student Takuma Yamaguchi. “New hardware with some specific features sometimes requires sophisticated implementations to achieve better performance.”

UNICORN performs denser computations, allowing it to take full advantage of the unique architecture of Summit, which features 9,216 IBM POWER9 CPUs and 27,648 NVIDIA Volta GPUs. The most computationally expensive piece of the code ran at 1.1 exaflops using mixed precision—a major undertaking for a code that is based on equations rather than deep learning computations. (Codes based on the latter are inherently optimal for systems such as Summit.)

Input fault slip distribution at Cascadia Subduction Zone and streamlines of displacement. Video courtesy of UTokyo.

For future earthquake problems, the team will need to apply UNICORN to analyze the Earth’s crust and mantle responses to a fault slip over time. This will require thousands of simulations then hundreds or thousands of additional iterations to compare the results with real-world earthquake events.

“To reach our earthquake forecasting goals, we will have to do many simulations of crust deformation and then compare our results with observed records from past earthquakes,” Ichimura said.

The team is presenting this work at the 2019 Supercomputing Conference, SC19, in a poster titled “416-PFLOPS Fast Scalable Implicit Solver on Low-Ordered Unstructured Finite Elements Accelerated by 1.10-ExaFLOPS Kernel with Reformulated AI-Like Algorithm: For Equation-Based Earthquake Modeling.” This work was conducted as joint research with NVIDIA, ORNL, the Japan Agency for Marine-Earth Science and Technology, the University of Texas at Austin, and RIKEN. Additionally, the team is presenting the work at the Workshop on Accelerator Programming Using Directives held in conjunction with SC19.

Related Publication: T. Ichimura, K. Fujita, T. Yamaguchi, A. Naruse, J. C. Wells, C. J. Zimmer, T. P. Straatsma, T. Hori, S. Puel, T. W. Becker, M. Hori, and N. Ueda. “416-PFLOPS Fast Scalable Implicit Solver on Low-Ordered Unstructured Finite Elements Accelerated by 1.10-ExaFLOPS Kernel with Reformulated AI-Like Algorithm: For Equation-Based Earthquake Modeling.” Poster to be presented at the 2019 International Conference for High Performance Computing, Networking, Storage, and Analysis (SC19), Denver, Colorado, November 17–22, 2019.

About Oak Ridge National Laboratory

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: Rachel Harken, Oak  Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire